

Energy Dependence of Higher Moments of Net-proton Multiplicity Distributions at STAR

Xiaofeng Luo(罗晓峰)

Institute of Particle Physics, Central China Normal University

Feb. 20, 2014

STAR Collaboration, Phys. Rev. Lett. 112, 032302 (2014)

Outline

- > Introduction
- > Analysis Techniques
- Results and Discussion
- > Summary

Exploring the Phase Diagram of QCD Matter

RHIC (Relativistic Heavy Ion Collider)

The high energy heavy-ion collider \sqrt{s} = 200 - 5 GeV The highest energy polarized proton collider (500 GeV)

STAR Detector

RHIC Beam Energy Scan-Phase I

In the first phase of the RHIC Beam Scan (BES), seven energies were surveyed in 2010 and 2011.

√s (GeV)	μ _B (MeV)	Events (Million)
7.7	422	4
11.5	316	12
19.6	206	36
27	156	70
39	112	130
62.4	73	67
200	24	240

The main goals of BES program:

- Turn-off of QGP signatures.
- Search for QCD critical point.
- Map the first order phase transition.

Search for the QCD Critical Point

Theory: Lattice QCD et al. Experiment: HIC et al.

S. Gupta, 罗晓峰, B. Mohanty, H.G. Ritter, and 许怒, **Science**, 332, 1525 (2011).

Experimental confirmation of QCD Critical Point is an excellent test of QCD theory in the non-perturbative region and is the milestone of exploring the QCD Phase Diagram.

Critical Point

T. Andrews. Phil. Trans. Royal Soc., 159:575, 1869.

Critical Opalescence as observed in CO2 liquid-gas transition.

At the Critical Point (CP):

- > 2nd order Phase Transition.
- \triangleright Diverges of the thermodynamics quantities, such as correlation length (ξ), Susceptibilities (χ), heat capacity (C_V).
- light wavelength comparable with the correlation length: Critical Opalescence.
- ➤ Universality Class: QCD critical point has the same critical exponents as liquid-gas critical point (Z₂ Class).
- > Critical slowing down, finite size effects et al.

QCD Critical Point Search: Strategy

- Need sensitive observable.
- Search for the non-monotonic dependence on energy.
- Understand the non-CP physics effect.
- Comparing with the QCD based dynamical model.

Characteristic Signature of Critical Point: Non-monotonic dependence on colliding energy.

Higher Moments (I): Sensitive to the Correlation Length

Skewness:

C_n: nth order cumulants

Kurtosis:

$$S = \frac{C_{3,N}}{(C_{2,N})^{3/2}} = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$$

Negative Skew Posit

- ➤ Ideal probe of non-gaussian fluctuations.
- \triangleright Sensitive to the correlation length (ξ).

$$<(\delta N)^2> \sim \xi^2$$
 $<(\delta N)^3> \sim \xi^{4.5}$
 $<(\delta N)^4> - 3 < (\delta N)^2>^2 \sim \xi^7$

M. A. Stephanov,

Phys. Rev. Lett. 102, 032301 (2009);

Phys. Rev. Lett. 107, 052301 (2011);

Search for CP in Heavy Ion Collisions (ξ ~2-3 fm)

Higher Moments (II): Related to the Susceptibility

Pressure:
$$\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_B, \mu_Q, \mu_S)$$

Susceptibility:

$$\chi_q^{(n)} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

(Conserved Quantum Number)

Lattice QCD

$$\begin{split} \chi_q^{(1)} &= \frac{1}{VT^3} \Big\langle \delta N_q \Big\rangle, \\ \chi_q^{(2)} &= \frac{1}{VT^3} \Big\langle \Big(\delta N_q \Big)^2 \Big\rangle \\ \chi_q^{(3)} &= \frac{1}{VT^3} \Big\langle \Big(\delta N_q \Big)^3 \Big\rangle \\ \chi_q^{(4)} &= \frac{1}{VT^3} \Big(\Big\langle \Big(\delta N_q \Big)^4 \Big\rangle - 3 \Big\langle \Big(\delta N_q \Big)^2 \Big\rangle^2 \Big) \end{split}$$

> Susceptibility \(\Delta \) Moments/Cumulants

$$\kappa\sigma^{2} \sim \frac{\chi^{(4)}}{\chi^{(2)}}, S\sigma \sim \frac{\chi^{(3)}}{\chi^{(2)}}, \frac{\sigma^{2}}{M} \sim \frac{\chi^{(2)}}{\chi^{(1)}}$$

R.V. Gavai and S. Gupta, PLB 696, 459 (2011).

S. Gupta, et al., *Science*, 332, 1525(2011).

Y. Hatta, et al, *PRL*. 91, 102003 (2003).

A. Bazavov et al .arXiv::1208.1220. 1207.0784.

F. Karsch et al, PLB 695, 136 (2011).

Experimental Measurement

Event-by-event fluctuations of net-baryon (B), net-charge (C) and net-strangeness number (S).

- > First measurement of the higher moments of net-proton distributions at RHIC.
- \triangleright There has no evidence for the existence of QCD critical point at μ_B <200 MeV.

Event and Track Selection

Energy (GeV)	7.7	11.5	19.6	27	39	62.4	200
Statistics (Million), 0-80%	~3	~6.6	~15	~30	~87	~47	~238
Year	2010	2010	2011	2011	2010	2010	2010

- Events QA: Some quality cuts have been applied. (Bad Run/Events Removed)
- ►PID : Energy loss (dE/dx) in STAR TPC is used to identify protons with high purity within $0.4 < p_T < 0.8$ (GeV/c) and at mid-rapidity |y|<0.5.

$$Z_{p} = \frac{\ln((dE/dx)_{\text{exp.}}/(dE/dx)_{\text{theory}})}{\sigma_{TPC}}$$

STAR TPC dE/dx PID

 $|Z_p| < 2$

Proton Phase Space

Analysis Techniques

Techniques:

Background/artifacts effects.

> Auto-correlation effects.

> Volume fluctuation effects.

> Detector efficiency effects.

1. Define the centrality without p and pbar

Initial volume fluctuation large η window.

Volume flu. within centrality

3. Centrality Bin Width Correction (CBWC).

4. Efficiency Correction

- X. Luo (STAR Collaboration), J. Phys. Conf. Ser. 316, 012003 (2011). (CBWC)
- X. Luo (STAR Collaboration), Nucl. Phys. A 904, 911c (2013).
- X. Luo (STAR Collaboration), Pos (CPOD 2013) 019 [arXiv: 1306.3106]. (Initial volume fluctuation)
- X. Luo, J. Phys. G 39, 025008 (2012). (Statistical Error)
- X. Luo, J. Xu, B. Mohanty, N. Xu, J. Phys. G 40, 105104 (2013). (Volume flu. and auto-correlation)

Centrality Definition

Refmult3 (Charged Pion+Kaon)

To avoid auto-correlation.

 $|\eta|$ <1, Current TPC Acceptance Limit.

Centrality Bin Width Effect and Correction

CBWC:

$$\omega_r = \frac{n_r}{\sum_{n} n_r}$$

CBWC:
$$\omega_{r} = \frac{n_{r}}{\sum n_{r}}$$

$$(1): C_{2} = \sum_{r=1}^{N} \omega_{r} C_{2,r}$$

$$(2): C_3 = \sum_{r=1}^{N} \omega_r C_{3,r}$$

$$(3): C_4 = \sum_{r=1}^{N} \omega_r C_{4,r}$$

r: rth multiplicity. n_r : # of events in r.

- The trend are different with different bin width.
- Low energy has larger effects.
- 3. Volume fluctuations within one centrality bin will enlarge the cumulants.

Centrality Resolution Effect

➤ Large difference are observed in mid-central /peripheral and low energies for different Refmult3 definition (different centrality resolutions).

Detector Efficiency Correction: Binomial Efficiency

This correction is done for refmult3 by refmult3 and corrected for bin width after efficiency correction. 5% uncertainty on the efficiency number is considered.

$$C_2(X-Y) = \frac{C_2(x-y) + (\varepsilon-1)(< x > + < y >)}{\varepsilon^2}$$

$$C_3(X-Y) = \frac{C_3(x-y) + 3(\varepsilon-1)(C_2(x) - C_2(y)) + (\varepsilon-1)(\varepsilon-2)(\langle x \rangle - \langle y \rangle)}{\varepsilon^3}$$

X: Input Proton,

Y: Input Anti-proton,

 $e = \frac{\varepsilon_p + \varepsilon_{\overline{p}}}{2}$

x: measured proton

y: measured anti-proton

C₂, C₃, C₄: 2nd, 3rd 4th order cumulants.

$$C_4(X-Y) = \frac{C_4(x-y)-2(\varepsilon-1)C_3(x+y)+8(\varepsilon-1)(C_3(x)+C_3(y))+(5-\varepsilon)(\varepsilon-1)C_2(x+y)+8(\varepsilon-2)(\varepsilon-1)(C_2(x)+C_2(y))+(\varepsilon^2-6\varepsilon+6)(\varepsilon-1)(< x>+< y>)}{\varepsilon^4}$$

Average Efficiency within transverse momentum range (a,b): Embedding efficiency weighted by p_T spectra.

$$\varepsilon(p \ or \ \overline{p} \) = \frac{\int\limits_a^b \varepsilon'(p_T) f(p_T) p_T \, \mathrm{dp_T}}{\int\limits_a^b f(p_T) p_T \, \mathrm{dp_T}} \quad \varepsilon'(p_T) : \text{embedding p_T} \\ \text{dependent efficiency} \\ \text{for proton or anti-proton.}$$

Error Estimation Method

Delta theorem and Bootstrap method give reasonable error estimation While the sub-group method overestimate the statistical errors.

Experimental Results

Raw Event-by-Event Net-proton Distributions

The raw net-p distributions are only for illustration purpose and should not be used to calculate the net-proton moments. (the centrality bin width correction have to be applied).

Mean net-proton, proton and anti-proton

- Net-proton, proton and anti-proton number increase with N_{part}.
- Net-proton increase when energy decrease and dominated by proton at low energies. (Interplay between baryon stopping and pair production)

Centrality Dependence of Net-proton Cumulants

- ➤ Linear increase with N_{part}.
- ➤ C1~C3 and C2~C4 for all energies.

Baselines

If proton and anti-proton are independent, then

$$C_n(p-\overline{p}) = C_n(p) + (-1)^n C_n(\overline{p}), \qquad n = 1,2,3...$$

$$n = 1, 2, 3...$$

1. Poisson Baseline: Assuming that the proton and antiproton are independent distributed as Poisson distribution.

$$C_n(X) = \langle X \rangle, \qquad X = p \quad , \quad \overline{p}$$

2. Binomial Baseline: Assuming that the proton and anti-proton are independent distributed as Binomial distribution.

Mean: μ =<X>

$$C_2(X) = \sigma^2 = \varepsilon \mu$$
 $C_3(X) = S\sigma^3 = \varepsilon \mu(2\varepsilon - 1)$

Variance to mean ratio:
$$\varepsilon = \sigma^2/\mu$$
 $C_4(X) = \kappa \sigma^4 = \varepsilon \mu (6\varepsilon^2 - 6\varepsilon + 1)$ $X = p$, \overline{p}

3. Models: HRG, UrQMD, AMPT, Hijing etc.

Baseline (I): Poisson and Binomial

- ➤ For Poisson case, the order of cumulant increases the deviations of the data from the Poisson expectation for net-proton and proton increase. Largest deviation is found for C4 at 19.6 and 27 GeV.
- For Binomial case, the agreement persist up to 3rd order. But fails to describe the data for C4 at 19.6 and 27 GeV.

Baseline (II): UrQMD

- The anti-proton distributions follow reasonably well the UrQMD expectations.
- The UrQMD model results for higher order cumulants can not explain the measured values at 19.6 and 27 GeV.

Moment Products Vs. UrQMD

- Good agreement between data and UrQMD for 7.7 GeV and close to data at 11.5 GeV. Disagreement between UrQMD and data for 19.6, 27, 39, 62.4 and 200 GeV.
- ➤ For the beam energies of 19.6 and 27 GeV the UrQMD results are higher than the data for most of the centrality presented.

Moments of Net-proton Distribution at RHIC

- All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ² and Sσ at all energies. Larger deviation at √s_{NN} ~ 20GeV
- 2) UrQMD model show monotonic behavior in the moment products
- Higher statistics needed for collisions at √s_{NN} < 20 GeV.
 BES-II is needed.
- Compare with QCD based dynamical model.

STAR: Xiaofeng Luo et al.

Phys. Rev. Lett. 112, 032302 (2014)

[arXiv: 1309.5681]

Location of CP: Recent Theory Prediction

Dyson-Schwinger approach (Nf=2+1)

Lattice QCD (Nf=2+1): Taylor Expansion

C. S. Fischer, Talk at NFQCD 2013, Japan

$$\mu_B^E/T^E\sim 5$$
 $\sqrt{s_{\scriptscriptstyle NN}}\sim 5~{\rm GeV}$

S. Gupta, Talk at Lattice 2013, France.

$$\mu^{\rm E}_{\rm B}/{
m T}^{\rm E}{\sim}1.7$$
 $\sqrt{{f s}_{\scriptscriptstyle NN}}$ ~20 GeV

Different Theory/Method gives very different CP location.

The STAR Upgrades and BES Phase II

- > Fine energy scan at $\sqrt{s_{NN}}$ <~ 20 GeV
- ➤ Electron cooling will provide increased luminosity ~ 3-10 times
- STAR iTPC upgrade extend mid-rapidity coverage beneficial to many crucial measurements

iTPC Upgrade

China: USTC, SDU, SINAP

For moment analysis, iTPC upgrade will provide better efficiency and centrality resolution.

Proposed Statistics for BES-II in BES White Paper

Collision Energies (GeV):	7.7	11.5	14.6	19.6		
Chemical Potenial (MeV):	420	315	260	205		
Observables	Millions of Events Needed					
R_{CP} up to p_T 4.5 GeV	NA	160	92	22		
Elliptic Flow of ϕ meson (v_2)	100	200	200	400		
Local Parity Violation	50	50	50	50		
Directed Flow studies (v_1)	50	100	100	200		
asHBT (proton-proton)	35	50	65	80		
net-proton kurtosis	80	120	200	400		
Chiral Trans Dileptons	100	230	300	400		
Proposed Number of Events:	100	230	300	400		

BES Phase II is planned for two 22 cryo-week runs in 2018 and 2019.

Summary

Measurements:

➤ We present the centrality and energy dependence for the first four moments/cumulants of the net proton multiplicity distributions in Au+Au collisions at RHIC BES-Phase I energies (7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV).

Comparisons with Various Baselines and Transport Model:

- ➤ Deviations below various baselines are observed in Au+Au collision below 39 GeV. Most significant deviation are found around 19.6 and 27 GeV.
- Not conclusive yet on searching for the QCD critical point, higher statistics are needed below 27 GeV to get more precise measurement: BES-II (from 2018). Also needs dynamical QCD modeling on the heavy ion collision.

Future Physics Opportunities:

- Find the QCD Critical Point: Need efforts from experimentalist and theorist.
- ➤ Precision measurement of the QGP Properties by comparing the data with the theoretical calculations, such as Lattice QCD.

Thank you!

Back Up Slides

Summary: QCD Phase Diagram

Theoretical Prediction: Critical Point Induced Dip

Frithjof Karsch, Talk at NFQCD 2013, Japan.

A dip in the kurtosis*variance is likely to show up on the freeze-out line in the vicinity of a critical endpoint.

see also: Misha Stephanov, Talk at EMMI Workshop 2013, LBNL, US

M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011);

Study by Hadron Resonance Gas Model

arXiv: 1304.7133

- ➤ Net-proton is a good approximation of Net-baryon.
- ➤ Net-baryon has less decay effect than in net-charge and net-strangeness.
- ➤ Particle carrying 2 charge play important role in net-charge.
- ➤ Net-kaon is not good approximation of netstrangeness